
Generating Composite Overlapping Grids
on CAD Geometries

William D. Henshaw

Centre for Applied Scientific Computing
Lawrence Livermore National Laboratory
Livermore, California, 94551 USA
henshaw1@llnl.gov

Abstract

We describe some algorithms and tools that have been developed to generate com-
posite overlapping grids on geometries that have been defined with computer aided
design (CAD) programs. This process consists of five main steps. Starting from
a description of the surfaces defining the computational domain we (1) correct er-
rors in the CAD representation, (2) determine the topology of the patched-surface,
(3) build a global triangulation of the surface, (4) construct structured surface and
volume grids using hyperbolic grid generation, and (5) generate the overlapping
grid by determining the holes and the interpolation points. The overlapping grid
generator which is used for the final step also supports the rapid generation of
grids for block-structured adaptive mesh refinement and for moving grids. These
algorithms have been implemented as part of the Overture object-oriented frame-
work.

Introduction

We briefly describe some algorithms and tools that have been developed to gener-
ate overlapping grids on geometries that have been defined with computer aided
design (CAD) programs. The fundamental steps in this process are

CAD fixup : When the CAD geometry is defined from a file format, such as
IGES, it is usually necessary to repair mistakes in the representation.

CAD connectivity : Since an IGES file usually contains no topology information
it is necessary to determine how the trimmed surface patches connect to
one another. We construct a global triangulation through an edge matching
algorithm.

Surface and Volume Grid Generation : We typically use a hyperbolic grid gen-
erator to build both the structured surface grids and the volume grids.



Overlapping Grid Generation : We have developed a new overlapping grid
generator, Ogen , that determines the overlapping grid (hole cutting, in-
terpolation information) from a collection of overlapping grids.

These algorithms have been implemented as part of the Overture object-oriented
framework. Overture is a toolkit that can be used to develop PDE solvers on over-
lapping grids and includes the grid generation tools that we describe here. The
OverBlown Navier-Stokes flow solver which is build using Overture is also avail-
able from this web page. OverBlown can be used to solve the time-dependent
incompressible and compressible Navier-Stokes equations and supports moving
grids and adaptive mesh refinement. Overture and OverBlown are freely avail-
able from www.llnl.gov/CASC/Overture.

Figure 1. Top left: a CAD geometry represented as a composite surface of mul-
tiple trimmed surfaces. Top right: global triangulation for the geometry. Bottom
left: a surface grid is generated with the hyperbolic grid generator. Bottom right:
overlapping grid for the geometry.



Preparation of the CAD geometry

The geometry is usually defined as a patched-surface consisting of a set of sub-
surfaces (or patches), see for example figure (1). A sub-surface may be defined
in a variety of ways such as with a spline, B-spline or non-uniform-rational-b-
spline (NURBS). In general the sub-surface will be trimmed, in which case only a
portion of the surface will be used, the valid region is defined by trimming curves,
see figure (2). The output from a CAD program will often be saved in a standard
file format such as IGES or the newer STEP specification. Unfortunately the
typical IGES output file does not include any connectivity (topology) information;
that is there is no information specifying how a given patch connects to other
neighbouring patches. To further complicate matters the trimmed patches will
often be inaccurate, or contain mistakes, making it difficult to determine where
two neighbouring patches should be joined.

CAD fixup: Errors in the geometry representation are fixed in stages. Gross er-
rors in the trimming curves are detected when the geometry is first read from the
database file. Errors detected at this initial step include trim curves that lie outside
the unit square in parameter space, trim curves that don’t close on themselves (i.e.
they should be periodic), and trim curves that self-intersect. These gross errors
should be fixed before proceeding to the connectivity stage. In Overture we have
the ability to edit the trim curves to fix these types of errors. See Petersson and
Chand [13] for more details of how we repair CAD geometries. Errors detected
later at the connectivity stage would include large gaps between patches or multi-
ple definition of patches. There are many approaches to fixing CAD and removing
unwanted details, see for example [10][14].

Figure 2. The trimmed patch (top) is formed from an untrimmed surface (middle)
and a set of one or more trimming curves (bottom). The untrimmed surface is a
mapping from two-dimensional parameter space into three-dimensional cartesian
space. The trimming curves are defined in parameter space. The trimming curve
is defined in the CAD file as a set of sub-curves (bottom).



CAD connectivity: The topology of the CAD geometry is determined using an
edge-curve matching algorithm whereby the boundary edges of trimmed surfaces
are merged with the boundary edges of neighbouring patches. Our algorithm is
similar to that of [17] but the idea has been used elsewhere [10][14].

This technique, shown in figure (3) begins by building curves (edge-curves) on the
boundaries of all trimmed-patches and then attempts to identify where an edge-
curve from one patch matches to the edge-curve of a neighbouring patch. It is
usually necessary to split the edge-curves at appropriate locations in order to per-
form the matching. When two edge-curves are identified to be the same we say
the edges have been merged and choose one edge-curve to define the boundary
segment for both patches. By merging edge-curves we effectively remove any
gaps or overlaps present in the original representation. See [7] for further details.

Figure 3. Figure showing the three stages of determining the connectivity. (1)
Edge-curves are built on each side of each patch. (2) The edge-curves are merged
and then split and merged. (3) Triangulations are built separately for each patch
and then stitched together at the common boundary points (bottom).

Global triangulation: A global triangulation can be built once the edge-curves



have been merged. When two edge-curves are merged, one of the two curves
is defined to be the true edge-curve. The trimmed-patches are redefined to use
the common edge. The global triangulation is formed by initially triangulating
each surface patch independently. The triangulation for a patch uses pre-defined
nodes on the edge-curves that form the boundary of the trimmed-patch and thus
triangulations for adjacent patches will share common nodes. The surface patches
are triangulated in the parameter space of the patch. This allows us to use fast
two-dimensional triangulation algorithms. We use the triangle program from
Shewchuk [15] to compute a constrained Delaunay triangulation. After the patch
has been triangulated in parameter space it is a simple matter to map the 2D pa-
rameter space nodes to 3D. The triangulations for the patches must be stitched
together to form a global triangulation. Figure (1) shows a global triangulation
built in this way.

Projection algorithm: The global triangulation serves as a basis for a fast algo-
rithm for projecting points onto the patched surface. This projection algorithm is
used by the hyperbolic surface grid generator. To project a point onto the patched
surface we start by projecting the point onto the global triangulation. Finding the
closest triangle is performed by a walking-algorithm if an initial guess is known
or otherwise by a global search using an alternating-digital-tree (ADT) tree. Since
each triangle belongs to just one sub-patch we can then project the point onto the
sub-patch using Newton’s method.

Surface and Volume Grid Generation

Structured surface grids can be generated using hyperbolic grid generation. This
approach was developed by Steger, Chan and Buning [3, 1, 2] and is also available
in Gridgen, see Steinbrenner and Chawner [16]. We have implemented our own
version within the Overture framework [6].

The basic marching equations to determine the surface grid x(r, t), on a surface
C(x) = 0, are defined by the hyperbolic PDE

xt = S(r, t) n(r, t)

x(r, 0) = x0(r) , initial curve

C(x(r, t)) = 0 , grid is constrained to C(x) = 0

B(x(r, t)) = 0 , boundary conditions



where

n(r, t) =
xr × ns

‖xr × ns‖
, normal to the front,

ns : normal to the surface C at x,

S(r, t) : scalar speed function.

There are a variety of ways to define the speed function S. See [6] for some possi-
ble approaches. These equations march the grid in the direction locally orthogonal
to the current front. The parameter t is a time like variable.

Figure (1) shows a surface grid generated on a geometry. Volume grids can also
be generated with hyperbolic grid generation. The algorithm is basically the same
as that described above.

Overlapping Grid Generation

Figure 4. Steps in the overlapping grid algorithm, left to right, top to bottom. 1)
After interpolating boundaries of grids that share a edge with another grid (inter-
polation points are shown small squares). 2) After cutting holes. Each physical
boundary cuts hole points (large squares) in other grids. 3) The hole points are
swept out starting from the holes computed in the previous step. 4) All the pos-
sible interpolation points are found so that excess overlap can removed or so that
better quality interpolation points can be used. 5) The final overlapping grid. The
excess overlap has been reduced to the (user specified) amount.



The overlapping grid generation algorithm determines how the different compo-
nent grids communicate with each other. The algorithm must also determine those
parts of component grids that are removed from the computation because that part
of the grid either lies underneath another grid of higher priority or else that part
of the grid lies outside the domain. The determination of the hole region is the
critical and key step of the algorithm. Other overlapping grid generators include
PEGSUS [18], Beggar [8], DCF[9] and xCog/Chalmesh [11][12].

We have developed a new overlapping grid generator called Ogen [5]. Ogen is
based on the CMPGRD grid generator [4] but usually a substantially different
algorithm resulting in a more robust approach. Some of the key features of Ogen
are

1. new hole cutting algorithm with a graceful failure mode.

2. corrections for boundaries of grids that overlap but do not match; this is an
especially troublesome problem when the grids are highly stretched.

3. support for higher order discretizations and interpolation.

4. support for cell-centred and vertex-centered interpolation.

5. optimized algorithms for moving grids.

6. support for block structured adaptive mesh refinement.

The basic steps in the overlapping grid algorithm are shown in figure (4). Fig-
ure (5) shows an example of a moving grid computation and an adaptive mesh
refinement computation. In these examples the grid generator must be called re-
peatedly to regenerate the grids. Optimized versions of the overlap algorithm are
used for this purpose. Further details will appear in a future paper.

Acknowledgments: Thanks to the many people who have contributed to Over-
ture in particular the current members of the Overture team, David Brown, Kyle
Chand, Petri Fast, Brian Miller, Dan Quinlan, Bobby Phillip, Anders Petersson
and Don Schwendeman. This research was performed under the auspices of the
U.S. Department of Energy by the University of California, Lawrence Livermore
National Laboratory under contract No. W-7405-Eng-48.

References

[1] W. CHAN AND P. BUNING, A hyperbolic surface grid generation scheme
and its applications, paper 94-2208, AIAA, 1994.



[2] W. M. CHAN, Hyperbolic methods for surface and field grid generation,
in Handbook of Grid Generation, J. F. Thompson, B. K. Soni, and N. P.
Weatherill, eds., CRC Press, 1999, ch. 5, pp. 1–26.

[3] W. M. CHAN AND J. L. STEGER, Enhancements of a three-dimensional
hyperbolic grid generation scheme, Applied Mathematics and Computation,
51 (1992), pp. 181–205.

[4] G. CHESSHIRE AND W. HENSHAW, Composite overlapping meshes for the
solution of partial differential equations, J. Comp. Phys., 90 (1990), pp. 1–
64.

[5] W. HENSHAW, Ogen: An overlapping grid generator for Overture, Re-
search Report UCRL-MA-132237, Lawrence Livermore National Labora-
tory, 1998.

[6] , The Overture hyperbolic grid generator, user guide, version 1.0, Re-
search Report UCRL-MA-134240, Lawrence Livermore National Labora-
tory, 1999.

[7] W. D. HENSHAW, An algorithm for projecting points onto a patched CAD
model, Research Report UCRL-JC-144016, Lawrence Livermore National
Laboratory, 2001. Submitted for publication.

[8] R. MAPLE AND D. BELK, A new approach to domain decomposition, the
beggar code, in Numerical Grid Genertation in Computational Fluid Dynam-
ics and Related Fields, N. Weatherill, ed., Pineridge Press Limited, 1994,
pp. 305–314.

[9] R. MEAKIN, A new method for establishing intergrid communication among
systems of overset grids, AIAA paper 91-1586-CP, American Institute of
Aeronautics and Astronautics, 1991.

[10] A. MEZENTSEV AND T. WOEHLER, Methods and algorithms of automated
CAD repair for incremental surface meshing, in 8th International Meshing
Roundtable, 1999, pp. 299–309.

[11] N. A. PETERSSON, An algorithm for assembling overlapping grid systems,
SIAM J. Sci. Comp., 20 (1999), pp. 1995–2021.

[12] , Hole-cutting for three-dimensional overlapping grids, SIAM J. Sci.
Comp., 21 (1999), pp. 646–665.

[13] N. A. PETERSSON AND K. K. CHAND, Detecting translation errors in CAD
surfaces and preparing geometries for mesh generation, in Proceeding of the
10th International Meshing Rountable, 2001.



[14] A. SHEFFER, T. BLACKER, J. CLEMENTS, AND M. BERCOVIER, Virtual
topology operators for meshing, in 6th International Meshing Roundtable,
1997, pp. 49–66.

[15] J. R. SHEWCHUK, Triangle: Engineering a 2D Quality Mesh Generator
and Delaunay Triangulator, in Applied Computational Geometry: Towards
Geometric Engineering, M. C. Lin and D. Manocha, eds., vol. 1148 of Lec-
ture Notes in Computer Science, Springer-Verlag, May 1996, pp. 203–222.
From the First ACM Workshop on Applied Computational Geometry.

[16] J. STEINBRENNER AND J. CHAWNER, Gridgen’s implementation of partial
differential equation based structured grid generation methods, in 8th In-
ternational Meshing Rountable, 1998. www.andrew.cmu.edu/user/sowen/-
imr8.html.

[17] J. STEINBRENNER, N. WYMAN, AND J. CHAWNER, Fast surface meshing
on imperfect CAD models, in 9th International Meshing Rountable, 2000.
www.andrew.cmu.edu/user/sowen/imr9.html.

[18] N. SUHS AND R. TRAMEL, Pegsus 4.0 user’s manual, Research Report
AEDC-TR-91-8, Arnold Engineering Development Center, Arnold AFB,
TN, 1991.



Figure 5. Ogen supports the rapid generation of block-structured adaptive mesh
refinement grids and moving grids. The figures show solutions computed by
OverBlown, of the equations of gas dynamics (top) and incompressible Navier-
Stokes equations (bottom).


